MENSURATION BASED QUANTITATIVE APTITUDE PRACTICE QUESTIONS AND ANSWERS PDF WITH EXPLANATION

For All Competitive SSC, Bank, IBPS, UPSC, Railway, IT Interviews \& Other Govt. Exams

www.careericons.com

Q1. Consider the following statements

I. The locus of points which are equidistant from two parallel lines is a line parallel to both of them and drawn mid way between them.
II. The perpendicular distances of any point on this locus line from two original parallel lines are equal. Further, no point outside this locus line has this property.

Which of the above statements is/are correct?
a) Both I and II
b) Only I
c) Only II
d) Neither I nor II

Q2. In the figure given below, PQ is a diameter of the circle whose centre is at O . If $\angle R O S=44^{\circ}$ and $O R$ is a bisector of $\angle P R Q$, then what is the value of $\angle R T S$?

a) 69°
b) 46°
c) 64°
d) None of these

Q3.

circle is inscribed in a quadrilateral $A B C D$. Given that, $B C=$ $38 \mathrm{~cm}, \mathrm{QB}=27 \mathrm{~cm}, \mathrm{DC}=25 \mathrm{~cm}$ and AD is perpendicular to $D C$. What is the radius of the circle?
a) 15 cm
b) 11 cm
C) 14 cm
d) 16 cm

Q4. The area of the largest triangle that can be inscribed in a semicircle of radius r is
a) $3 r^{2}$
b) r^{2}
c) $2 r^{2}$
d) $4 r^{2}$

5000+ FREE QUANTITATIVE APTITUDE QUESTION BANK FOR ALL SSC, UPSC, BANK, RAILWAY EXAMS
 Free Practice MCQs »
 Download More PDF »

Q5. A wire is in the form of a circle of radius 42 cm . If it is bent into a square, then what is the side of the square?
a) 36 cm
b) 66 cm
c) 42 cm
d) 33 cm

Q6. If the area of a circle inscribed in an equilateral triangle is 154 sq cm , then what is the perimeter of the triangle?
a) $21 \sqrt{3} \mathrm{~cm}$
b) 21 cm
c) $42 \sqrt{3} \mathrm{~cm}$
d) 42 cm

Q7. From a solid cylinder of height 4 cm and radius 3 cm , a conical cavity of height 4 cm and of base radius 3 cm is hollowed out. What is the total surface area of the remaining solid?
a) $33 \pi \mathrm{sq} \mathrm{cm}$
b) $15 \pi \mathrm{sq} \mathrm{cm}$
c) $22 \pi \mathrm{sq} \mathrm{cm}$
d) $48 \pi \mathrm{sq} \mathrm{cm}$

Q8. Three lines intersect each other in pairs. What is the number of angles so formed?
a) 9
b) 3
c) 6
d) 12

Q9. If the angle between the radii of a circle is 130°, then the angle between the tangents at the ends of the radii is
a) 50°
b) 90°
c) 70°
d) 40°

Q10. If the side of a cube is increased by 100%, then by what percentage is the surface area of the cube increased ?
a) 300%
b) 150%
c) 200%
d) 400%

Q11. What is the height of a solid cylinder of radius 5 cm and total surface area is 660 sq cm ?
a) 15 cm
b) 10 cm
c) 12 cm
d) 16 cm

Q12. A village having a population of 4000 requires 150 litres of water per head per day. It has a tank measuring $20 \mathrm{~m} \times 15 \mathrm{~m} \times 6 \mathrm{~m}$. The water of this tank will last for
a) 4 days
b) 2 days
c) 3 days
d) 5 days

1000+ FREE MENSURATION BASED QUESTIONS AND ANSWERS FOR ALL COMPETITIVE EXAMS

Free Practice MCQs » Download More PDF »

Free Online Quiz »

Q13. In the given figure, L is any point on the bisector of the acute angle $A B C$ and the line $M L$ is parallel to $B C$. Which one of the following is correct?

a) The $\triangle \mathrm{BML}$ is isosceles but not right angled
b) The $\triangle \mathrm{BML}$ is equilateral
c) The $\triangle \mathrm{BML}$ is isosceles but right angled
d) The $\triangle \mathrm{BML}$ is not isosceles

Q14. A semi-circular plate is rolled up to form a conical surface. The angle between the generator and the axis of the cone is
a) 30°
b) 60°
c) 45°
d) 15°

Q15. The radius of the wheel of a bus is 70 cms and the speed of the bus is $66 \mathrm{~km} / \mathrm{h}$, then the r.p.m. (revolutions per minutes) of the wheel is
a) 300
b) 200
c) 250
d) 330

Read More Mensuration Question And Answes »

Answers to the above questions :

Q1. Answer: (a)

Statements I and II are both true, because the locus of points which are equidistant from two parallel lines is a line parallel to both of them and draw mid way between them.

Also, it is true that the perpendicular distances of any point on this locus line from two original parallel lines are equal. Further, no point outside this locus line has this property.

Q2. Answer: (d)

Since, $O R$ is a bisector of $\angle P R Q$.
$\therefore \angle \mathrm{PRO}=\angle \mathrm{ORQ}=45^{\circ}$
Also, $O P=O R$
$\therefore \angle \mathrm{OPR}=45^{\circ}$

In $\triangle \mathrm{ORS}$,
$\mathrm{OR}=\mathrm{OS} \Rightarrow \angle \mathrm{ORS}=\angle \mathrm{OSR}=\frac{180^{\circ}-44^{\circ}}{2}=68^{\circ}$
$\therefore \angle \mathrm{MRS}=68^{\circ}-45^{\circ}=23^{\circ}$
$\Rightarrow \angle \mathrm{PRS}=90^{\circ}+23^{\circ}=113^{\circ}$
By properties of cyclic quadrilateral.
$\angle \mathrm{PRS}+\angle \mathrm{PQS}=180^{\circ}$
$\Rightarrow \angle P Q S=180^{\circ}-113^{\circ}=67^{\circ}$

In $\triangle P T Q$,
$\angle \mathrm{QPT}+\angle \mathrm{PQT}+\angle \mathrm{PTQ}=180^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}=180^{\circ}-45^{\circ}-67^{\circ}=68^{\circ}$

Q3. Answer: (c)

Given $B C=38 \mathrm{~cm}$
$Q B=27 \mathrm{~cm}$
$D C=25 \mathrm{~cm}$
$A D \perp D C$

We know that tangents are always equal, when they drawn to the circle from a point outside the circle.
$\therefore B Q=B R=27 \mathrm{~cm}$
$R C=B C-B R=38-27=11 \mathrm{~cm}$
$R C=P C=11 \mathrm{~cm}$
$D C=25 \mathrm{~cm}$
$D P=D C-P C=25-11=14 \mathrm{~cm}$
$D P=O T=O P$
\therefore Radius of the circle $=14 \mathrm{~cm}$

5000+ QUANTITATIVE APTITUDE TOPIC WISE QUESTION BANK WITH SOLVED ANSWERS \& FREE PDF

PROFIT \& LOSS

TIME \& WORK PIPES \& CISTERNS
TRAINS SIMPLIFICATION DISCOUNT
POWER,INDICES AND SURDS RATIO \& PROPORTION
MENSURATION PERMUTATIONS \& COMBINATION

ALGEBRAIC EXPRESSIONS

TRIGONOMETRIC RATIOS \& IDENTITIES SET THEORY

LINEAR EQUATIONS QUADRATIC EQUATIONS LOGARITHM

PROBABILITY STATISTICS SQUAREROOTS \& CUBEROOTS

Q4. Answer: (b)

Let $A B C$ is triangle, which have maximum area, while
$A C$ is $2 r$

But $O B=O C=r$
By Pythagoras theorem
$O B^{2}+O C^{2}=B C^{2}$
$B C=\sqrt{2} r=A C$
Area of triangle $=\frac{1}{2} \times \sqrt{2} r \times \sqrt{2} r=r^{2}$

Q5. Answer: (b)

Circumference of circle $=2 \pi \times 42$
$=2 \times \frac{22}{7} \times 42=264 \mathrm{~cm}$
Perimeter of square $=4 x \Rightarrow 264=4 x$
$x=66 \mathrm{~cm}$

Q6. Answer: (c)

Here OP is radius of circle and given triangle is equilateral.
$\therefore \mathrm{BP}=\frac{a}{2}$
In $\triangle B O P$,
$\tan 30^{\circ}=\frac{O P}{B P}$
$O P=B P \tan 30$
$=\frac{a}{2} \times \frac{1}{\sqrt{3}}=\frac{a}{2 \sqrt{3}}=$ radius.
Now, Area of circle $=\pi r^{2}$
$154=\pi \times\left(\frac{a}{2 \sqrt{3}}\right)^{2}$
$\Rightarrow 154=\pi \frac{a^{2}}{12}$
$\Rightarrow 154=\frac{22}{7} \times \frac{a^{2}}{12}$
$a=\sqrt{7 \times 7 \times 12}$
$=7 \times 2 \sqrt{3}=14 \sqrt{3}$
Perimeter of triangle $=3$
$=3 \times 14 \sqrt{3}=42 \sqrt{3}$

Q7. Answer: (d)

Total surface area $=$ Curved surface area of cylinder + Curved surface area of cone + Top surface area of cylinder
$=2 \pi r h+\pi r l+\pi r^{2}$
$=\pi\left(2 \times 3 \times 4 \times+3 \sqrt{3^{2}+4^{2}}+3^{2}\right)$
$\left(\because 1=\sqrt{r^{2}+h^{2}}\right)$
$=\pi(24+15+9)=48 \pi \mathrm{sqcm}$

Q8. Answer: (d)

We know that, when two lines intersect each other it makes 4 angles.

The total number of pairs $=3$

\therefore Total number of angles $=3 \times 4=12$

Q9. Answer: (a)

$O A$ and $O B$ are radii of circle, $A C$ and $B C$ are tangents
Now, $\angle A O B+\angle A C B=180^{\circ}$
$\angle \mathrm{ACB}=180^{\circ}-130^{\circ}=50^{\circ}$

Q10. Answer: (a)
$x+y+\frac{x y}{100}$
$=100+100+\frac{100 \times 100}{100}$
$=200+100=300 \%$

Q11. Answer: (d)

Radius (r) $=5 \mathrm{~cm}$
Total surface area $=660 \mathrm{~cm}^{2}$
$\Rightarrow 2 \pi r h+2 \pi r^{2}=660$
$\Rightarrow 2 \pi r(h+r)=660$
$\Rightarrow(\mathrm{h}+5)=\frac{330}{5 \pi}=\frac{330}{5} \times \sim \frac{7}{22}$
$\Rightarrow \mathrm{h}=\frac{66 \times 7}{22}-5=21-5=16 \mathrm{~cm}$.

Q12. Answer: (c)

Volume of tank $=20 \times 15 \times 6 \mathrm{~m}^{3}$
$=20 \times 15 \times 6 \times 1000$ litre
\therefore The water of the tank will last for
$\frac{20 \times 15 \times 6 \times 1000}{150 \times 4000}$ days.
i.e. The water of the tank will last for 3 days.

Q13. Answer: (a)

Since, $B L$ is bisector of $\angle A B C$.

$\angle \mathrm{MBL}=\angle \mathrm{LBC}=x$ (say)
Also, ML ||BC
$\angle \mathrm{LBC}=\angle \mathrm{MLB}=\mathrm{x} \Rightarrow \angle \mathrm{MLB}=\angle \mathrm{MBL}$
$\triangle B L M$ is an isosceles triangle and $\angle B M L$ need not to be 90°.
$\Delta \mathrm{BML}$ is isosceles but not right angled.

Q14. Answer: (a)

Since, the radius of semicircle $=$ slant height of the cone $=r$
And the circumference of semicircle $=$ circumference of base of cone.
$\pi r=2 \pi R \Rightarrow \frac{r}{2}=R$.
In $\triangle \mathrm{OAB}$
$\sin \theta=\frac{R}{r}=\frac{\frac{r}{2}}{r}=\frac{1}{2}=\sin 30^{\circ}$
$\theta=30^{\circ}$

Q15. Answer: (c)

Radius of the wheel of bus $=70 \mathrm{~cm}$. Then, circumference of wheel $=2 \pi r=140 \pi=440 \mathrm{~cm}$

Distance covered by bus in 1 minute
$=\frac{66}{60} \times 1000 \times 100 \mathrm{cms}$
Distance covered by one revolution of wheel
= circumference of wheel
$=440 \mathrm{~cm}$
\therefore Revolutions per minute $=\frac{6600000}{60 \times 440}=250$

