CALENDAR BASED VERBAL REASONING PRACTICE QUESTIONS AND ANSWERS PDF WITH EXPLANATION

For All Competitive SSC, Bank, IBPS, UPSC, Railway, IT \& Other Govt. Exams Created By Careericons Team

Q1. What was the day of the week on $1^{\text {st }}$ April 1901?
a) Sunday
b) Monday
c) Wednesday
d) Saturday

Q2. What was the day of the week on $30^{\text {th }}$ June 1980 ?
a) Friday
b) Wednesday
c) Monday
d) Saturday

Q3. What day of the week was on 15th August 1949?
a) Monday
b) Tuesday
c) Thursday
d) Saturday

Q4. On which day of the week does 18th September 1991 fall?
a) Wednesday
b) Tuesday
c) Friday
d) Saturday

Q5. Ashu was born on August 19, 1992, What day of the week was the born?
a) Sunday
b) Monday
c) Tuesday
d) Wednesday

Q6. On which dates of April 2012 will a Sunday come?
a) $5,12,19,26$
b) $1,8,15,22,29$
c) $3,10,17,24$
d) $7,14,21,28$

Q7. What was the day of the week on 28th May 2006 ?
a) Thursday
b) Friday
c) Saturday
d) Sunday

Q8. What was the day of the week on 17th June, 1998?
a) Monday
b) Tuesday
c) Wednesday
d) Thursday

Q9. On What dates of April 2001 did Wednesday fall?
a) $1^{\text {st }}, 8^{\text {th }}, 15^{\text {th }}, 22^{\text {nd }}, 29^{\text {th }}$
b) $2^{\text {nd }}, 9^{\text {th }}, 16^{\text {th }}, 23^{\text {rd }}, 30^{\text {th }}$
c) $3^{\text {rd }}, 10^{\text {th }}, 17^{\text {th }}, 24$ th
d) $4^{\text {th }}, 11^{\text {th }}, 18^{\text {th }}, 25^{\text {th }}$

Q10. What day of the week was on $1^{\text {st }}$ January 2001?
a) Monday
b) Wednesday
c) Sunday
d) Tuesday

Q11. What was the day of the week on $15^{\text {th }}$ August 1947 ?
a) Saturday
b) Friday
c) Sunday
d) Monday

Q12. What was the day of the week on $28^{\text {th }}$ May 2006 ?
a) Saturday
b) Thursday
c) Sunday
d) Friday

1000+ FREE CALENDAR BASED QUESTIONS AND ANSWERS FOR ALL COMPETITIVE EXAMS

Q13. On which day of the week does $28^{\text {th }}$ August 2009 fall?
a) Monday
b) Friday
c) Sunday
d) Tuesday

Q14. What was the day on $1^{\text {st }}$ January 1901?
a) Monday
b) Wednesday
c) Sunday
d) Tuesday

Read More calendar problems Question and Answes »

Answers to the above questions :

Q1. Answer: (b)
$1^{\text {st }}$ April 1901 means 1900 complete years + first 3 months of $1901+1$ day of April
Number of odd days in 1600 yrs $=0$
Number of odd days in $300 \mathrm{yrs}=1$
Number of odd days in 1901 yrs

January	3
February	0
March	3
April	1

$=3+0+3+1=7$
? 0 odd days
Total number of odd days till $1^{\text {st }}$ April $1901=0+1+0=1$
So, the required day was Monday.

Q2. Answer: (c)

$30^{\text {th }}$ June 1980 means 1979 complete years +6 months of 1980
Number of odd days in 1600 yrs $=0$
Number of odd days in 300 yrs = 1
Number of odd days in 79 yrs = (19 leap yrs +60 ordinary years $)$
$=19 \times 2+60 \times 1=38+60=98$
? o odd days

January	3
February	1
March	3
April	2
May	3
June	2

Number of odd days in $1980=3+1+3+2+3+2=14$
? 0 odd days
Total number of odd days till $30^{\text {th }}$ June, $1980=0+1+0+0=1$
So, the required day was Monday.

Q3. Answer: (a)

$15^{\text {th }}$ August 1949 means,
1948 complete year + First 7 months of the year $1949+15$ days of August
Number of odd days in 1600 yrs $=0$
Number of odd days in $300 \mathrm{yrs}=1$
Number of odd days in 48 yr (36 non - leap years + 12 leap years)
$=36 \times 1+12 \times 2$
$=60=7 \times 8+4=4$
odd days From $1^{\text {st }}$ January 1949 to $15^{\text {th }}$ August 1949

Number of odd days in 1949,

January	3
February	0
March	3
April	2
May	3
June	2
July	3
August	$(15 \div 7)=1$

Total number of odd days in $1949=3+0+3+2+3+2+3+1=17$
$=7 \times 2+3=3$ odd day
Total odd days $=1+4+3=8$
$=1$ odd days
Since, 1 is the code for Monday.
Therefore, the required day was Monday.

5000+ VERBAL REASONING TOPIC WISE MCQ QUESTION BANK WITH SOLVED ANSWERS \& FREE PDF

ANALOGY BLOOD RELATIONS CODING \& DECODING CLASSIFICATION
VENN DIAGRAMS CLOCKS CALENDAR PUZZLES TEST
DIRECTION \& DISTANCE SENSE TEST ASSERTION \& REASON
CAUSE AND EFFECT SEATING ARRANGEMENTS STATEMENT \& CONCLUSION

SERIES COMPLETION STATEMENT \& ARGUMENTS

STATEMENT \& ASSUMPTIONS STATEMENT \& COURSE OF ACTION
PASSAGE \& CONCLUSION SEQUENTIAL TEST MATHEMATICAL OPERATIONS

WORD FORMATION ALLIGATION \& MIXTURES

Q4. Answer: (a)
$18^{\text {th }}$ September 1991 means,
1990 complete years + 8 months of $1991+18$ days of September

Number of odd days in 1600 yrs $=0$
Number of odd days in $300 \mathrm{yrs}=1$
Number of odd days in 90 yrs (22 leap year + 68 ordinary years)
$=22 \times 2+68 \times 1$
$=44+68=112$
? 0 odd days
Number of odd days in 1991,

January	3
February	0
March	3
April	2
May	3
June	2
July	3
August	3
September	4

$=3+0+3+2+3+2+3+3+4$
$=23=7 \times 3+2$
$=2$ odd days
Total number of odd days till 18th September, 1991
$=0+1+0+2=3$
So, the required day was Wednesday.

Q5. Answer: (d)

19th August 1992 means,
1991 complete years + First 7 months of $1992+19$ days of August
Number of odd days in 1600 years $=0$
Number of odd days in $300 \mathrm{yrs}=1$
Number of odd days in 91 yrs (22 leap year +69 non-leap years)
$=22 \times 2+69 \times 1$
$=44+69113$
$=7 \times 16+1=1$ odd day
From 1st January, 1992 to 19th August, 1992
Number of odd days in 1992,

January	3
February	1
March	3
April	2
May	3
June	2
July	3
August	5

$=3+1+3+2+3+2+3+5$
$=22=7 \times 3+1$
$=1$ odd day
? Number of odd days till 19th August, $1992=0+1+1+1=3$
So, the required day was Wednesday.

Q6. Answer: (b)

First of all, we have to find the day on $1^{\text {st }}$ April, $20121^{\text {st }}$ April 2012 means (2011 years 3 months and 1 day)

Now, 2000 years have 0 odd days 11 years have
(2 leap years and 9 ordinary years)
$=(2 \times 2+9 \times 1)$ odd days
$=(4+9)$ odd days $=13$
$=6$ odd days
3 months and 1 day

February	29
March	31
April	1

= 92 days = 1 odd day
Total number of odd days $=(6+1)=7$
\⇒ 0 odd day
Hence, it was Sunday on $1^{\text {st }}$ April 2012. ($1^{\text {st }}$ Sunday).
Subsequently, Sundays of the month were on $1^{\text {st }}, 8^{\text {th }}, 15^{\text {nd }}, 22^{\text {nd }}$, and $29^{\text {th }}$.

Q7. Answer: (d)

Q8. Answer: (c)

Q9. Answer: (d)

Q10. Answer: (a)

$1^{\text {st }}$ January 2001 means 2000 complete years +1 day of January 2001
Number of odd days in 2000 yrs $=0$
Number of odd days in January $2001=1$
Total number of odd days $=0+1=1$
So, the required day was Monday

Q11. Answer: (b)

Odd days in 1600 yrs $=0$
Odd days in $300 \mathrm{yrs}=1$
46 yrs = (11 leap year + 35 ordinary year $)$
$=(11 \times 2+35 \times 1)=1$ odd day
\∴ Odd days in 1946 yrs $=(0+1+1)=2$

Month	Odd days
January	3
February	0
(ordinary year)	
March	3
April	2
May	3
June	2
July	3
August	1 i.e, $(15 \div 7)$

Total 17 17 $\div 7=$ remainder 3 odd days
Total odd days $=2+3=5$
\∴ Required day = Friday

Q12. Answer: (c)

Odd days in 1600 yrs $=0$
Odd days in 400 yrs $=05$ yrs $=(4$ ordinary year +1 leap year $)$
$=(4 \times 1+1 \times 2)=6$ odd days

Month	Odd days
January	3
February	0 (ordinary year)
March	3
April	2
May	0 i.e, $(28 \div 7)$
Total	8

Total odd days $=8+6=14=0$ odd day
? Required day Sunday

Q13. Answer: (b)

$28^{\text {th }}$ August 2009 means,
2008 complete years + First 7 months of the year $2009+28$ days of August
Number of odd days in 2000 yrs $=0$
Number of odd days from 2001 yrs to 2008 yrs

Year	Number of odd days
2001	1
2002	1
2003	1
2004	2
2005	1
2006	1
2007	1
2008	2

2001200220032004200520062007200811121112
$=1+1+1+2+1+1+1+2=10$
$=7 \times 1+3=3$ odd days
Number of odd days in 2009,

Month	Odd days
January	3
February	0
	(ordinary year)
March	3
April	2
May	3
June	2
July	3
August	0

January February March April May July August 30323230
$=3+0+3+2+3+2+3+0$
$=16=7 \times 2+2=2$ odd days
Total number of odd days till $28^{\text {th }}$ August 2009
$=0+3+2=5$
So, the required day is Friday.

Q14. Answer: (d)
$1^{\text {st }}$ January 1901 means
$=(1900 \mathrm{yrs}$ and 1 day $)$
Now, 1600 yrs have 0 odd days,
300 yrs have 1 odd day and 1 day has 1 odd day.
Total number of odd days $=0+1+1=2$ days
? the day on 1st January, 1901 was Tuesday.

On our site Careerions.com, You can find all the content you need to prepare for any kind of exam like. Verbal Reasoning, Non-Verbal Reasoning, Aptitude, English, Computer, History, Polity, Economy, Geography, General Science, General Awareness \& So on. Make use of our expertcurated content to get an edge over your competition and prepare for your exams effectively.

Practice with our Free Practice MCQs, Mock Tests Series, Online Quiz and get an idea of the real exam environment. Keep track of your progress with our detailed performance reports. They are perfect for competitive exam preparation, as well as for brushing up on basic \& fundamental knowledge. The questions are updated regularly to keep up with the changing syllabuses.

