CALENDAR BASED VERBAL REASONING PRACTICE QUESTIONS AND ANSWERS PDF WITH EXPLANATION

For All Competitive SSC, Bank, IBPS, UPSC, Railway, IT & Other Govt. Exams

Created By Careericons Team

Q1. If 26 January 2011 was Wednesday, then what day of the week was it on 26th January 2012?

- a) Monday
- b) Wednesday
- c) Tuesday
- d) Thursday

Q2. If 1st day of a year which is not a leap year is Friday, then find the last day of that year,

- a) Sunday
- b) Friday
- c) Monday
- d) Wednesday

Q3. If it was Saturday on December 17, 1899, then what will be the day on December 22, 1901?

- a) Friday
- b) Saturday
- c) Sunday
- d) Monday

Q4. If the national day of a country was celebrated on the 4th Saturday of a month, then find the date of celebration, when the first day of that month is Tuesday.

a) 24th

b)	25 th
----	------------------

- c) 26th
- d) 27th

Q5. If Republic day was celebrated in 1996 on Friday, on which day in 2000 Independence day was celebrated?

- a) Monday
- b) Tuesday
- c) Wednesday
- d) Saturday

Q6. If the third day of a month is Monday, then which of the following will be the fifth day from 21st of that month?

- a) Tuesday
- b) Monday
- c) Wednesday
- d) Thursday

Q7. On 8th Dec 2007, Saturday falls. What day of the week was it on 8th Dec. 2006?

- a) Sunday
- b) Thursday
- c) Tuesday
- d) Friday

Q8. January 1, 2007, was Monday. What day of the week lies on Jan. 1, 2008?

a) Monday

- b) Tuesday
- c) Wednesday
- d) Sunday

Q9. On 6th March 2005, Monday falls. What was the day of the week on 6th March 2004?

- a) Sunday
- b) Saturday
- c) Tuesday
- d) Wednesday

Q10. January 1, 2008, is Tuesday. What day of the weeklies on Jan. 1, 2009?

- a) Monday
- b) Wednesday
- c) Thursday
- d) Sunday

Q11. If 1st January 2001 was Monday, then what day of the week was it on 31st December 2001?

- a) Saturday
- b) Wednesday
- c) Monday
- d) Friday

Q12. The first day of a leap year is Wednesday, then what day of the week was it on 31st December in that year?

- a) Thursday
- b) Monday
- c) Saturday
- d) Wednesday

Q13. If 1st January 2007 was Monday, then what day of the weeklies on 1st January 2008?

- a) Thursday
- b) Tuesday
- c) Monday
- d) Wednesday

Q14. If 1st January 2008 is Tuesday, then what day of the weeklies on 1st January 2009?

- a) Sunday
- b) Tuesday
- c) Thursday
- d) Thursday

Q15. Find the number of days from 26th January 2011 to 23^rd September 2011 (both days are included).

- a) 214
- b) 241
- c) 249
- d) 251

Answers to the above questions :

Q1. Answer: (d)

26th January 2011 to 26th January 2012 will be considered as an ordinary year because 26th January in 2012 (a leap year) comes before 29th February.

Hence, the period of this one year will have only 1 odd day.

Since 26th January 2011 = Wednesday

? 26th January 2012 = Wednesday + 1 odd day

= Thursday

Q2. Answer: (b)

As we know that, first and last day of an ordinary year is the same.

Since, 1^{st} day = Friday

? Last day = Friday

Q3. Answer: (b)

Since, December 17, 1899 - Saturday

December 17, 1900 - Sunday

December 18, 1901 - Tuesday

? December 22, 1901 - Saturday

5000+ VERBAL REASONING TOPIC WISE MCQ QUESTION BANK WITH SOLVED ANSWERS & FREE PDF

ANALOGY BLOOD RELATIONS CODING & DECODING CLASSIFICATION

VENN DIAGRAMS CLOCKS CALENDAR PUZZLES TEST

DIRECTION & DISTANCE SENSE TEST ASSERTION & REASON

 CAUSE AND EFFECT
 SEATING ARRANGEMENTS
 STATEMENT & CONCLUSION

 SERIES COMPLETION
 STATEMENT & ARGUMENTS

 STATEMENT & ASSUMPTIONS
 STATEMENT & COURSE OF ACTION

 PASSAGE & CONCLUSION
 SEQUENTIAL TEST
 MATHEMATICAL OPERATIONS

 WORD FORMATION
 ALLIGATION & MIXTURES

Q4. Answer: (c)

According to the question,

National day = 4^{th} Saturday Since, 1^{st} day = Tuesday ? 1^{st} Saturday = Tuesday + 4 = 1 + 4 = 5^{th} day ? 2^{nd} Saturday = 5 + 7 = 12^{th} day 3^{rd} Saturday = 12 + 7 = 19^{th} day 4^{th} Saturday = 19 + 7 = 26^{th} day So, National day was celebrated on 26^{th} of that month.

Q5. Answer: (b)

Number of days in 1996 (366-26) = 340

Number of days in 1997 = 365

Number of days in 1998 = 365

Number of days in 1999 = 365

Number of days from January 2000 to July 2000 = 31 + 29 + 31 + 30 + 31 + 30 + 31

= 213

Number of days from 1^{st} to 15^{th} August, 2000 = 15

? Total days = 340 + 365 + 365 + 365 + 213 + 15 = 1663

? 1663 ÷ 7 = remainder 4

? 1663 days = (237 X 7 + 4) days = 237 weeks + 4 days

- ? Number of odd days = 4
- ? Day on 15th August, 2000 = Friday + 4 Odd days = Tuesday

Q6. Answer: (c)

Fifteen days from 21st will be 26th and Monday lies on 3rd, 10th, 17th, 24th.

So, the day on 26th will be Wednesday.

Q7. Answer: (d)

The year 2006 is an ordinary year.

So, it has 1 odd day.

So, the day of 8th Dec 2007 will be 1 day beyond the day on 8th Dec 2006.

But, 8th Dec 2007 is Saturday.

Therefore, 8th Dec 2006 is Friday.

Q8. Answer: (b)

The year 2007 is an ordinary year.

So, it has 1 odd day.

1st day of the year 2007 was Monday.

1st day of the year 2008 will be 1 day beyond Monday.

Hence, it will be Tuesday.

Q9. Answer: (b)

The year 2004 is a leap year.

So, it has 2 odd days.

Therefore, The day of 6th March 2005 will be 2 days beyond the day on 6th March 2004.

But, 6th march, 2005 is Monday.

Therefore, 6th March 2004 is Saturday.

Q10. Answer: (c)

The year 2008 is a leap year.

So, it has 2 odd days.

1st day of the year 2008 is Tuesday (Given)

So, 1st day of the year 2009 is 2 beyond Tuesday.

Hence, it will be Thursday.

Q11. Answer: (c)

The year 2001 was an ordinary year and in an ordinary year 1st day = Last day

(remember) 1st January = 31st December

As, given that, 1st January = Monday

Hence, 31st December = Monday

Q12. Answer: (a)

In a leap year, Last day = 1^{st} day + 1 odd day (remember)

As given, 1st day = Wednesday

Last day = Wednesday + 1 odd day = Thursday

Q13. Answer: (b)

2007 is an ordinary year and in an ordinary year 1st January = 31st December

As, 1st January = Monday

- ? 31st December = Monday
- ? 1st January 2008 = Monday + 1odd day = Tuesday

Q14. Answer: (c)

Since 2008 is a leap year.

In a leap year, last day = 1st day 1 + odd day

- = Tuesday + 1 odd day
- = Wednesday = 31st December

? 1st January, 2009 = Wednesday + 1 odd day = Thursday

Q15. Answer: (b)

According to the question,

26th January to 31st January = 6 days

February = 28 days

March = 31 days

April = 30 days

May = 31 days

June = 30 days

July =31 days

August = 31 days

1st September to 23rd September 23 days

Total days = 241

? Required days = 241

On our site **Careerions.com**, You can find all the content you need to prepare for any kind of exam like. **Verbal Reasoning, Non-Verbal Reasoning, Aptitude, English, Computer, History, Polity, Economy, Geography, General Science, General Awareness** & So on. Make use of our expert-

curated content to get an edge over your competition and prepare for your exams effectively.

Practice with our **Free Practice MCQs, Mock Tests Series, Online Quiz** and get an idea of the real exam environment. Keep track of your progress with our detailed performance reports. They are perfect for competitive exam preparation, as well as for brushing up on basic & fundamental knowledge. The questions are updated regularly to keep up with the changing syllabuses.